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SUMMARY

Accuracy improvement is demonstrated by alternative use of a recently proposed LES formalism based
on sampling operators. It is shown that the sampling-based dynamic procedure, in combination with an
appropriate truncation error model, can be used as a technique to increase the numerical accuracy of a
discretization. The technique is resemblant to Richardson extrapolation. The procedure is tested on a 2D
lid-driven cavity at Re=400 using a finite difference method. Promising results are obtained. Copyright
q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A sampling formalism for large eddy simulation (LES) was proposed by Winckelmans et al. [1]
and Knaepen et al. [2], which is a projection method for Navier–Stokes equations from continuum
space to a discrete space using a sampling operator instead of a filter operator. Since the sampling
operator does not commute with spatial derivatives, a closure term appears which represents the
loss of information due to the projection on the discrete mesh. In [1, 2] a Smagorinsky model was
proposed that, by relying on a generalized dynamic procedure, succeeded in accounting for the
subgrid scales. The technique is meant to model turbulent subgrid stresses, but as it fundamentally
describes the projection error on a discrete mesh, it might as well be used to model the truncation
error of the discretization. In previous work, we investigated the ability of this sampling-based
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dynamic procedure, in combination with an appropriate model for the truncation error, to obtain
higher numerical accuracy [3]. We also showed that Richardson extrapolation can be seen as a
simplified formulation of this procedure. In the present work, we investigate the role of the blending
factor and the corresponding variation of the dynamic coefficient. We apply the procedure to the
lid-driven cavity and, in contrast to the previous work, we use now pressure stabilization in the
discretization and improved boundary conditions at the lid. Moreover, an eighth-order reference
solution was created for more reliable error evaluation.

2. THE SAMPLING FORMALISM

We define the sampling operator S�1 , which operates between the continuum space �⊂Rn and
the discrete space ��1 with number of grid points N1, and spacing �1. This sampling operatorS�1

is idempotent and commutative with the product of the non-linear terms, but does not commute
with spatial derivatives. We use notations S�1 ◦ui =ui and S�1 ◦�=�. Applying S�1 to the
continuity equation and the momentum equations gives

�ui
�xi

=��1 (1)

�ui
�t

+u j
�ui
�x j

=− �p

�xi
+�

�2ui
�x2j

+��1
i (2)

The truncation errors arise due to the non-commutativity of the operator S�1 with the spatial
derivatives, and have the basic form
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(3)
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3. THE GENERALIZED DYNAMIC PROCEDURE

Projection is done of the Navier–Stokes equations from a continuum domain � to a corresponding
discrete domain ��1 and to ��2 with the number of gridpoints N2<N1 (��2 ⊂��1). This corre-
sponds with the sampling operatorsS�1 andS�2 projecting, respectively, �→��1 and �→��2 .
S�2 also projects ��1 →��2 , since S�2 ◦S�1 =S�2 . We introduce S�2 ◦ui = ũi = ũi . We keep
the notation for the discrete derivative operator S�2 ◦�=�. Applying the operator S�1 on the
continuous set of equations leads to

0=C�1(ui )+��1 =−�ui
�xi

+��1 (5)
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Here, C�1 and N
�1
i are called the continuity and Navier–Stokes operators, respectively. Applying

S�2 to the continuous set of equations gives

0=C�2 (̃ui )+��2 =−�ũi
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+��2 (7)
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Ideally, the latter set should also be obtained by applying the sampling operator S�2 to the first
set of Equations (5)–(6) and because of S�2 ◦S�1 =S�2 , the following relations are implied:

S�2 ◦C�1(ui )−C�2 (̃ui )=��2 −S�2 ◦��1 (9)

S�2 ◦N�1
i (ui )−N

�2
i (̃ui )=��2

i −S�2 ◦��1
i (10)

These explicitly express the commutation errors made by the projection ��1 →��2 . The expres-
sions can be determined in terms of the resolved velocity ui since S�2 ◦ui = ũi = ũi . Suppose
models are adopted for the truncation errors ��1 and ��1

i consisting of a grid-independent scalar
field denoted by C , and a grid-dependent model part denoted by m, such that ��1 ≈C�m�,�1 and
��1
i ≈C�

i m
�,�1
i . Analogously for the test level, �2. C� and C�

i are fully determined by relations
(9)–(10), which can be rewritten in every node as

L� =C�M�, L�
i =C�

i M
�
i (11)

To avoid possible singularities leading to instability of the method, we suggest to use a least-squares
approximation to determine the grid-independent factors:

C= 〈LM〉
〈MM〉 (12)

in which 〈.〉 denotes the average over the whole field.

4. ILLUSTRATION FOR A FIRST-ORDER DERIVATIVE

In order to show the relationship of the dynamic procedure to Richardson extrapolation and to
assess the spectral quality of the method, we proceed with the analysis of a single finite difference
derivative instead of using the complete set of Navier–Stokes equations. Therefore, consider the
Taylor series expansions of the nth discrete derivative �nu/�xn on two grids with spacings � and
2�, for a kth-order central scheme,

�nu
�xn

(x)= �nu

�xn

∣∣∣∣�+ck�
k �k+nu

�xk+n

∣∣∣∣∣
�
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We assume that the leading order truncation term is an adequate model for the complete truncation
error. A blending factor f is introduced into the coarse grid equation to provide a switch between the
dynamic procedure ( f =1) and Richardson extrapolation ( f =0), and to investigate intermediate
behaviour. Applying the generalized dynamic procedure is equivalent to extracting an expression
for ck from (13) and (14) and substituting it into (13). Using the relationship

�nũ/�xn|2�−�nu/�xn|� =c∗
k (1−2k)�k�k+nu/�xk+n|� (15)

from Richardson extrapolation, in which c∗
k =− 1

6 , the resulting expression can be written as
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The Richardson extrapolation formula is obtained for a blending factor f =0 which is equivalent
to imposing

�k+nũ/�xk+n|2� ≡�k+nu/�xk+n|� ≡�k+nu/�xk+n (17)

leading to a (k+2)th-order accurate central scheme for the nth derivative. It should be mentioned
that ck is obtained on the coarse grid and needs interpolation to the fine grid before substituting it
into (13). Another possibility is evaluating ck in every point on the fine grid; therefore, replacing
ũ by u in (14).

For further analysis of expression (16), a Fourier analysis for a single wave is performed for
the second-order accurate gradient. Modified wavenumbers of the resulting expression are given
in Figure 1 for several central schemes, and also for the dynamic expression (16) at values of
f =1, 12 ,

1
3 ,

1
4 ,

1
5 ,

1
10 . In case of f =0, expression (16) collapses with the fourth-order scheme and

is therefore not shown. Using a blending factor f =1 leads to a singularity at �/�max≈0.38,
displaying a severe defect for the higher wavenumber range. However, decreasing this blending
factor improves the spectral quality a lot. It can be noticed from the estimated accuracy plot, which
compares the spectral behaviour of the procedure with the traditional standard schemes, that f = 1

5
optimizes the scheme for the lower wavenumber range, and should thus be ideal for the laminar
flow calculations in this work. For the lower wavenumbers the accuracy is then slightly better than
the sixth order, for the higher wavenumbers it is somewhat less. If the higher wavenumber range
is more important, such as in some LES approaches or simulations with steep gradients, a choice
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Figure 1. (a) Modified wavenumbers: (�) spectral; (◦) second order; (�) fourth order; (�) sixth order;
(�) eighth order; (�) tenth order; (—) dynamic procedure and (b) estimated order of accuracy �.

of f = 1
3 could be justified, such that the accuracy for the higher wavenumbers is more than sixth

order, while maintaining the fourth order for lower ones.

5. MODELLING TRUNCATION ERRORS FOR NAVIER–STOKES EQUATIONS

Instead of evaluating a truncation correction and determining one dynamic constant for every
distinct derivative in the Navier–Stokes equations, we try to increase the accuracy of the discretiza-
tion by using a single model for all truncation errors in each equation and thus finding one dynamic
constant for each equation. For a second-order central difference discretization scheme for first- and
second-order partial derivatives, we suggest the following model. This truncation error model is
obtained from the leading order truncation terms in the Taylor series expansion and the theoretical
value of the factors C� and C�

i is 1
6 :

��1 =C��x2i
�3ui
�x3i

(18)
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2
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In the simulations C� and C�
i are dynamically obtained using a least-squares method, as in (12).

We also introduced a blending factor f straightforwardly, as done in Equations (13)–(14).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:1241–1247
DOI: 10.1002/fld



1246 D. FAUCONNIER, C. DE LANGHE AND E. DICK

6. RESULTS

The test case is a steady laminar flow in a 2D lid-driven cavity at Reynolds number Re=400. In
order to avoid the unphysical corner singularities for the pressure, the imposed velocity profile at
the driven lid is chosen to be sinusoidal. A pseudo-compressible code is used with a third-order
Runge–Kutta method for stepping in pseudo-time. The reference solution was generated on a
120×120 uniform mesh with an eighth-order central scheme, and eighth-order excentric derivatives
at the wall. We used a higher-order pressure stabilization �= 1

512�x
7
i �

8 p/�x8i in the continuity
equation in order to avoid interference with the accuracy as much as possible. All other simulations
were done analogously on a 60×60 mesh including the fourth- and sixth-order solutions used for
comparison. For the continuity equation and the momentum equations, truncation error models
(18) respectively (19) are used in combination with the dynamic procedure. The influence of the
blending factor f is studied.

Results for the absolute errors of velocity, �u and �v , are shown in Figure 2 for the different
simulations with different values of the blending factor. As expected from the wavenumber analysis,
the dynamic procedure with the exact truncation model and f = 1

5 obtains an accuracy somewhat
higher than the sixth-order solution. Results with the blending factors f = 1

4 and 1
3 give comparable

error levels, although f = 1
4 tends to give slightly better results while f = 1

3 tends to do slightly
worse. Further increase of the blending factor to f = 1

2 leads to an obvious deterioration, and
for f =1, the error levels exceed those of the fourth-order solution, illustrating the singularity
in the modified wavenumber for this factor. Results for f =0 are not shown in Figure 2 as they

Figure 2. Error levels �u and �v in the cross-sections of the cavity y= L/2 and x= L/2: (	) sixth-order;
(◦) fourth-order; (×) f =1; (+) f = 1

2 ; (- -) f = 1
3 ; (—) f = 1

4 ; (– · –) f = 1
5 .
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Table I. Numerical values of the dynamically obtained constants.

Constant f =0 f = 1
5 f = 1

4 f = 1
3 f = 1

2 f =1

C� 0.1667 0.1694 0.1699 0.1705 0.1708 0.1652
C�
x 0.1667 0.1633 0.1622 0.1603 0.1559 0.1400

C�
y 0.1667 0.1753 0.1770 0.1792 0.1834 0.1791

collapse with the fourth-order solution. All these observations confirm the theoretical analysis of
the presented procedure. The numerical values of the dynamic constants for each value of the
blending factors are given in Table I.

7. CONCLUSION

The presented results demonstrate the ability of a dynamic procedure in combination with an
appropriate truncation error model to obtain higher accuracy. It was shown that the truncation
error model in combination with a dynamically obtained constant for each equation leads to an
accuracy slightly better than that of a sixth-order scheme. An optimal value of the blending factor
can be chosen according to the physics of the flow, optimizing the scheme for higher or lower
wavenumber ranges. The present technique could certainly be a useful tool in multigrid algorithms
providing higher accuracy at minimal extra cost. For single grid computations, the gain in accuracy
is in competition with the additional cost of the procedure.
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